Self-tuning is a cost-effective and elegant solution to the important problem of configuring a database to the characteristics of the query load. Existing techniques operate in an off-line fashion, by choosing a fixed configuration that is tailored to a subset of the query load. The generated configurations therefore ignore any temporal patterns that may exist in the actual load submitted to the system. This demonstration introduces COLT (Continuous On-Line Tuning), a novel self-tuning framework that continuously monitors the incoming queries and adjusts the system configuration in order to maximize query performance. The key idea behind COLT is to gather performance statistics at different levels of detail and to carefully allocate profiling resources to the most promising candidate configurations. Moreover, COLT uses effective heuristics to regulate its own performance, lowering its overhead when the system is well-tuned, and being more aggressive when the workload shifts and it bec...