Ranking is an important property that needs to be fully supported by current relational query engines. Recently, several rank-join query operators have been proposed based on rank aggregation algorithms. Rank-join operators progressively rank the join results while performing the join operation. The new operators have a direct impact on traditional query processing and optimization. We introduce a rank-aware query optimization framework that fully integrates rank-join operators into relational query engines. The framework is based on extending the System R dynamic programming algorithm in both enumeration and pruning. We define ranking as an interesting property that triggers the generation of rank-aware query plans. Unlike traditional join operators, optimizing for rank-join operators depends on estimating the input cardinality of these operators. We introduce a probabilistic model for estimating the input cardinality, and hence the cost of a rank-join operator. To our knowledge, thi...
Ihab F. Ilyas, Rahul Shah, Walid G. Aref, Jeffrey