Traditional databases store sets of relatively static records with no pre-defined notion of time, unless timestamp attributes are explicitly added. While this model adequately represents commercial catalogues or repositories of personal information, many current and emerging applications require support for online analysis of rapidly changing data streams. Limitations of traditional DBMSs in supporting streaming applications have been recognized, prompting research to augment existing technologies and build new systems to manage streaming data. The purpose of this paper is to review recent work in data stream management systems, with an emphasis on application requirements, data models, continuous query languages, and query evaluation.
Lukasz Golab, M. Tamer Özsu