Decision support system users typically submit batches of range-sum queries simultaneously rather than issuing individual, unrelated queries. We propose a wavelet based technique that exploits I/O sharing across a query batch to evaluate the set of queries progressively and efficiently. The challenge is that now controlling the structure of errors across query results becomes more critical than minimizing error per individual query. Consequently, we define a class of structural error penalty functions and show how they are controlled by our technique. Experiments demonstrate that our technique is efficient as an exact algorithm, and the progressive estimates are accurate, even after less than one I/O per query.
Rolfe R. Schmidt, Cyrus Shahabi