We address the image denoising problem, where zeromean white and homogeneous Gaussian additive noise should be removed from a given image. The approach taken is based on sparse and redundant representations over a trained dictionary. The proposed algorithm denoises the image, while simultaneously trainining a dictionary on its (corrupted) content using the K-SVD algorithm. As the dictionary training algorithm is limited in handling small image patches, we extend its deployment to arbitrary image sizes by defining a global image prior that forces sparsity over patches in every location in the image. We show how such Bayesian treatment leads to a simple and effective denoising algorithm, with state-of-the-art performance, equivalent and sometimes surpassing recently published leading alternative denoising methods.