In this paper, we propose a sequential approach to hallucinate/synthesize high-resolution images of multiple facial expressions. We propose an idea of multi-resolution tensor for super-resolution, and decompose facial expression images into small local patches. We build a multi-resolution patch tensor across different facial expressions. By unifying the identity parameters and learning the subspace mappings across different resolutions and expressions, we simplify the facial expression hallucination as a problem of parameter recovery in a patch tensor space. We further add a high-frequency component residue using nonparametric patch learning from high-resolution training data. We integrate the sequential statistical modelling into a Bayesian framework, so that given any low-resolution facial image of a single expression, we are able to synthesize multiple facial expression images in high-resolution. We show promising experimental results from both facial expression database and live v...