Quality is becoming increasingly important with the continuous adoption of open-source software. Previous research has found that there is generally a positive relationship between module size and defect proneness. Therefore, in open-source software development, it is important to monitor module size and understand its impact on defect proneness. However, traditional approaches to quality modeling, which measure specific system snapshots and obtain future defect counts, are not well suited because open-source modules usually evolve and their size changes over time. In this study, we used Cox proportional hazards modeling with recurrent events to study the effect of class size on defectproneness in the Mozilla product. We found that the effect of size was significant, and we quantified this effect on defect proneness.