The advances in wireless networking and the consequent emergence of new applications that wireless networks increasingly support inevitably leads to low capability mobile nodes connecting to peer-to-peer networks. However, the characteristics of mobile nodes and limitations of access point coverage often cause mobile nodes to lose connectivity, which can cause many mobile nodes to simultaneously rejoin the network. Continuous departures and joins due to the mobility of nodes leads to mobility churn, which can often degrade the performance of the underlying peer-topeer network significantly. In this paper, we use simulations to demonstrate that the Stealth Distributed Hash Table (Stealth DHT) algorithm is ideally suited for networks with mobile nodes. By avoiding storing state in unreliable nodes, a Stealth DHT prevents mobile nodes from being used by other nodes to provide services. Consequently, Stealth DHTs eliminate the mobility churn effect and significantly reduce the amount of o...
Andrew MacQuire, Andrew Brampton, Idris A. Rai, La