: In this paper, we analyze the node scheduling approach of topology control in the context of reliable packet delivery. In node scheduling, only a minimum set of nodes needed for routing purposes (usually determined by a minimum connected dominating set, MCDS) are kept active. However, a very low density resulting from switching off nodes can adversely affect the performance of data delivery due to three factors. First, our analysis shows that at low density, the average path length increases by a factor more than previously thought. Second, protocols such as the Hop-By-Hop Broadcast (HHB) reliability scheme (which relies on high network degree for optimum performance) suffer. Third, with limited buffers at nodes, the overhead is more pronounced to the extent of making the network unstable. Using probabilistic models, we derive the relationship between network density and overhead based on the above factors and find the density conditions for minimum power consumption. We also propose...