A Bluetooth ad hoc network can be formed by interconnecting piconets into scatternets. The constraints and properties of Bluetooth scatternets present special challenges in forming an ad hoc network efficiently. In this paper, we evaluate the performance of a new randomized distributed Bluetooth scatternet formation protocol. Our simulations validate the theoretical results that our scatternet formation protocol runs in O(log n) time and sends O(n) messages. The scatternets formed have the following properties: 1) any device is a member of at most two piconets, and 2) the number of piconets is close to be optimal. These properties can avoid overloading of any single device and lead to low interference between piconets. In addition, the simulations show that the scatternets formed have O(log n) diameter. As an essential part of the scatternet formation protocol, we study the problem of device discovery: establishing multiple connections with many masters and slaves in parallel. We inve...
Ching Law, Amar K. Mehta, Kai-Yeung Siu