Abstract. A theoretical framework is proposed for accurate performance analysis of minimum energy coding schemes in Coded Division Multiple Access (CDMA) wireless sensor networks. Bit error rate and average energy consumption is analyzed for two coding schemes proposed in the literature: Minimum Energy coding (ME), and Modified Minimum Energy coding (MME). Since CDMA wireless systems are strongly limited by multi access interference, the system model includes all the relevant characteristics of the wireless propagation. Furthermore, a detailed model of the energy consumption is described as function of the coding schemes, the radio transmit powers, the characteristics of the transceivers, and the dynamics of the wireless channel. A distributed radio power minimization algorithm is also addressed. Numerical results show that ME and MME coding schemes exhibit similar bit error probabilities, whereas MME outperforms ME only in the case of low data rate and large coding codewords.