Sciweavers

DCC
2008
IEEE

Idempotents in the neighbourhood of Patterson-Wiedemann functions having Walsh spectra zeros

14 years 11 months ago
Idempotents in the neighbourhood of Patterson-Wiedemann functions having Walsh spectra zeros
In this paper we study the neighbourhood of 15-variable Patterson-Wiedemann (PW) functions, i.e., the functions that differ by a small Hamming distance from the PW functions in terms of truth table representation. We exploit the idempotent structure of the PW functions and interpret them as Rotation Symmetric Boolean Functions (RSBFs). We present techniques to modify these RSBFs to introduce zeros in the Walsh spectra of the modified functions with minimum reduction in nonlinearity. Our technique demonstrates 15-variable balanced and 1-resilient functions with currently best known nonlinearities 16272 and 16264 respectively. In the process, we find functions for which the autocorrelation spectra and algebraic immunity parameters are best known till date.
Sumanta Sarkar, Subhamoy Maitra
Added 25 Dec 2009
Updated 25 Dec 2009
Type Conference
Year 2008
Where DCC
Authors Sumanta Sarkar, Subhamoy Maitra
Comments (0)