The low-density attack proposed by Lagarias and Odlyzko is a powerful algorithm against the subset sum problem. The improvement algorithm due to Coster et al. would solve almost all the problems of density < 0.9408... in the asymptotical sense. On the other hand, the subset sum problem itself is known as an NP-hard problem, and a lot of efforts have been paid to establish public-key cryptosystems based on the problem. In these cryptosystems, densities of the subset sum problems should be higher than 0.9408... in order to avoid the low-density attack. For example, the Chor-Rivest cryptosystem adopted subset sum problems with relatively high densities. In this paper, we further improve the low-density attack by incorporating an idea that integral lattice points can be covered with polynomially many spheres of shorter radius and of lower dimension. As a result, the success probability of our attack can be higher than that of Coster et al.'s attack for fixed dimensions. The densit...