We continue the study of the linear complexity of binary sequences, independently introduced by Sidel'nikov and Lempel, Cohn, and Eastman. These investigations were originated by Helleseth and Yang and extended by Kyureghyan and Pott. We determine the exact linear complexity of several families of these sequences using well-known results on cyclotomic numbers. Moreover, we prove a general lower bound on the linear complexity profile for all of these sequences.