In scientific computing environments, large amounts of floating-point data often need to be transferred between computers as well as to and from storage devices. Compression can reduce the number of bits that need to be transferred and stored. However, the runtime overhead due to compression may be undesirable in high-performance settings where short communication latencies and high bandwidths are essential. This paper describes and evaluates a new compression algorithm that is tailored to such environments. It typically compresses numeric floating-point values better and faster than other algo