Sciweavers

CVPR
2007
IEEE

Kernel-based Tracking from a Probabilistic Viewpoint

15 years 1 months ago
Kernel-based Tracking from a Probabilistic Viewpoint
In this paper, we present a probabilistic formulation of kernel-based tracking methods based upon maximum likelihood estimation. To this end, we view the coordinates for the pixels in both, the target model and its candidate as random variables and make use of a generative model so as to cast the tracking task into a maximum likelihood framework. This, in turn, permits the use of the EM-algorithm to estimate a set of latent variables that can be used to update the target-center position. Once the latent variables have been estimated, we use the Kullback-Leibler divergence so as to minimise the mutual information between the target model and candidate distributions in order to develop a target-center update rule and a kernel bandwidth adjustment scheme. The method is very general in nature. We illustrate the utility of our approach for purposes of tracking on real-world video sequences using two alternative kernel functions.
Quang Anh Nguyen, Antonio Robles-Kelly, Chunhua Sh
Added 12 Oct 2009
Updated 28 Oct 2009
Type Conference
Year 2007
Where CVPR
Authors Quang Anh Nguyen, Antonio Robles-Kelly, Chunhua Shen
Comments (0)