Sciweavers

WSDM
2010
ACM

Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation

14 years 10 months ago
Pairwise Interaction Tensor Factorization for Personalized Tag Recommendation
Tagging plays an important role in many recent websites. Recommender systems can help to suggest a user the tags he might want to use for tagging a specific item. Factorization models based on the Tucker Decomposition (TD) model have been shown to provide high quality tag recommendations outperforming other approaches like PageRank, FolkRank, collaborative filtering, etc. The problem with TD models is the cubic core tensor resulting in a cubic runtime in the factorization dimension for prediction and learning. In this paper, we present the factorization model PITF (Pairwise Interaction Tensor Factorization) which is a special case of the TD model with linear runtime both for learning and prediction. PITF explicitly models the pairwise interactions between users, items and tags. The model is learned with an adaption of the Bayesian personalized ranking (BPR) criterion which originally has been introduced for item recommendation. Empirically, we show on real world datasets that this mod...
Steffen Rendle, Lars Schmidt-Thieme
Added 01 Mar 2010
Updated 02 Mar 2010
Type Conference
Year 2010
Where WSDM
Authors Steffen Rendle, Lars Schmidt-Thieme
Comments (0)