Complex systems exhibit emergent patterns of behavior at different levels of organization. Powerful network analysis methods, developed in physics and social sciences, have been successfully used to tease out patterns that relate to community structure and network dynamics. In this paper, we mine the complex network of collaboration relationships in computer science, and adapt these network analysis methods to study collaboration and interdisciplinary research at the individual, within-area and network-wide levels. We start with a collaboration graph extracted from the DBLP bibliographic database and use extrinsic data to define research areas within computer science. Using topological measures on the collaboration graph, we find significant differences in the behavior of individuals among areas based on their collaboration patterns. We use community structure analysis, betweenness centralization, and longitudinal assortativity as metrics within each area to determine how centraliz...
Andre Nash, Christian Bird, Earl T. Barr, Premkuma