The decomposition method is currently one of the major methods for solving the convex quadratic optimization problems being associated with support vector machines. For a special case of such problems the convergence of the decomposition method to an optimal solution has been proven based on a working set selection via the gradient of the objective function. In this paper we will show that a generalized version of the gradient selection approach and its associated decomposition algorithm can be used to solve a much broader class of convex quadratic optimization problems.