We present a systematic procedure for selecting facial fiducial points associated with diverse structural characteristics of a human face. We identify such characteristics from the existing literature on anthropometric facial proportions. We also present three dimensional (3D) face recognition algorithms, which employ Euclidean/geodesic distances between these anthropometric fiducial points as features along with linear discriminant analysis classifiers. Furthermore, we show that in our algorithms, when anthropometric distances are replaced by distances between arbitrary regularly spaced facial points, their performances decrease substantially. This demonstrates that incorporating domain specific knowledge about the structural diversity of human faces significantly improves the performance of 3D human face recognition algorithms.
Shalini Gupta, J. K. Aggarwal, Mia K. Markey, Alan