We present a method which enables rapid and dense reconstruction of scenes browsed by a single live camera. We take point-based real-time structure from motion (SFM) as our starting point, generating accurate 3D camera pose estimates and a sparse point cloud. Our main novel contribution is to use an approximate but smooth base mesh generated from the SFM to predict the view at a bundle of poses around automatically selected reference frames spanning the scene, and then warp the base mesh into highly accurate depth maps based on view-predictive optical flow and a constrained scene flow update. The quality of the resulting depth maps means that a convincing global scene model can be obtained simply by placing them side by side and removing overlapping regions. We show that a cluttered indoor environment can be reconstructed from a live hand-held camera in a few seconds, with all processing performed by current desktop hardware. Real-time monocular dense reconstruction opens up many ap...