Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily established, which is not necessarily true when large deformations produce significant appearance changes between the input and the reference images. Furthermore, it is either assumed that the pose of the camera is known, or the estimated solution is pose-ambiguous. In this paper we relax all these assumptions and, given a set of 3D and 2D unmatched points, we present an approach to simultaneously solve their correspondences, compute the camera pose and retrieve the shape of the surface in the input image. This is achieved by introducing weak priors on the pose and shape that we model as Gaussian Mixtures. By combining them into a Kalman filter we can progressively reduce the number of 2D candidate...