We propose Recursive Compositional Models (RCMs) for simultaneous multi-view multi-object detection and parsing (e.g. view estimation and determining the positions of the object subparts). We represent the set of objects by a family of RCMs where each RCM is a probability distribution defined over a hierarchical graph which corresponds to a specific object and viewpoint. An RCM is constructed from a hierarchy of subparts/subgraphs which are learnt from training data. Part-sharing is used so that different RCMs are encouraged to share subparts/subgraphs which yields a compact representation for the set of objects and which enables efficient inference and learning from a limited number of training samples. In addition, we use appearance-sharing so that RCMs for the same object, but different viewpoints, share similar appearance cues which also helps efficient learning. RCMs lead to a multi-view multi-object detection system. We illustrate RCMs on four public datasets and achieve sta...