GMM based algorithms have become the de facto standard for background subtraction in video sequences, mainly because of their ability to track multiple background distributions, which allows them to handle complex scenes including moving trees, flags moving in the wind etc. However, it is not always easy to determine which distributions of the mixture belong to the background and which distributions belong to the foreground, which disturbs the results of the labeling process for each pixel. In this work we tackle this problem by taking the labeling decision together for all pixels of several consecutive frames minimizing a global energy function taking into account spatial and temporal relationships. A discrete approximative optical-flow like motion model is integrated into the energy function and solved with Ishikawa’s convex graph cuts algorithm.