The Semantic Web community, until now, has used traditional database systems for the storage and querying of RDF data. The SPARQL query language also closely follows SQL syntax. As a natural consequence, most of the SPARQL query processing techniques are based on database query processing and optimization techniques. For SPARQL join query optimization, previous works like RDF-3X and Hexastore have proposed to use 6-way indexes on the RDF data. Although these indexes speed up merge-joins by orders of magnitude, for complex join queries generating large intermediate join results, the scalability of the query processor still remains a challenge. In this paper, we introduce (i) BitMat – a compressed bit-matrix structure for storing huge RDF graphs, and (ii) a novel, light-weight SPARQL join query processing method that employs an initial pruning technique, followed by a variable-binding-matching algorithm on BitMats to produce the final results. Our query processing method does not bui...
Medha Atre, Vineet Chaoji, Mohammed J. Zaki, James