With the prosperity of tourism and Web 2.0 technologies, more and more people have willingness to share their travel experiences on the Web (e.g., weblogs, forums, or Web 2.0 communities). These so-called travelogues contain rich information, particularly including location-representative knowledge such as attractions (e.g., Golden Gate Bridge), styles (e.g., beach, history), and activities (e.g., diving, surfing). The location-representative information in travelogues can greatly facilitate other tourists’ trip planning, if it can be correctly extracted and summarized. However, since most travelogues are unstructured and contain much noise, it is difficult for common users to utilize such knowledge effectively. In this paper, to mine location-representative knowledge from a large collection of travelogues, we propose a probabilistic topic model, named as Location-Topic model. This model has the advantages of (1) differentiability between two kinds of topics, i.e., local topics whic...