ct This paper discusses the practical implementation of a novel security tool termed SIMPL system, which was introduced in [1]. SIMPL systems can be regarded as a public key version of physical unclonable functions (PUFs). Like the latter, a SIMPL system S is physically unique and nonreproducible, and implements an individual function FS. In opposition to a PUF, however, a SIMPL system S possesses a publicly known numerical description, which allows its digital simulation and prediction. At the same time, any such simulation must work at a detectably lower speed than the real-time behavior of S. As argued in [1], SIMPL systems have certain practicality and security advantages in comparison to PUFs, certificates of authenticity, physically obfuscated keys, and also to standard mathematical cryptotechniques. In [1], definitions, protocols, and optical implementations of SIMPL systems were presented. This manuscript focuses on concrete electrical, integrated realizations of SIMPL system...