Given the video of a still background occluded by a fluid dynamic texture (FDT), this paper addresses the problem of separating the video sequence into its two constituent layers. One layer corresponds to the video of the unoccluded background, and the other to that of the dynamic texture, as it would appear if viewed against a black background. The model of the dynamic texture is unknown except that it represents fluid flow. We present an approach that uses the image motion information to simultaneously obtain a model of the dynamic texture and separate it from the background which is required to be still. Previous methods have considered occluding layers whose dynamics follows simple motion models (e.g. periodic or 2D parametric motion). FDTs considered in this paper exhibit complex stochastic motion. We consider videos showing an FDT layer (e.g. pummeling smoke or heavy rain) in front of a static background layer (e.g. brick building). We propose a novel method for simultaneously s...