Binary semantic relation extraction from Wikipedia is particularly useful for various NLP and Web applications. Currently frequent pattern miningbased methods and syntactic analysis-based methods are two types of leading methods for semantic relation extraction task. With a novel view on integrating syntactic analysis on Wikipedia text with redundancy information from the Web, we propose a multi-view learning approach for bootstrapping relationships between entities with the complementary between the Web view and linguistic view. On the one hand, from the linguistic view, linguistic features are generated from ic parsing on Wikipedia texts by abstracting away from different surface realizations of semantic relations. On the other hand, Web features are extracted from the Web corpus to provide frequency information for relation extraction. Experimental evaluation on a relational dataset demonstrates that linguistic analysis on Wikipedia texts and Web collective information reveal differ...