— Large graphs and networks are abundant in modern information systems: entity-relationship graphs over relational data or Web-extracted entities, biological networks, social online communities, knowledge bases, and many more. Often such data comes with expressive node and edge labels that allow an interpretation as a semantic graph, and edge weights that reflect the strengths of semantic relations between entities. Finding close relationships between a given set of two, three, or more entities is an important building block for many search, ranking, and analysis tasks. From an algorithmic point of view, this translates into computing the best Steiner trees between the given nodes, a classical NP-hard problem. In this paper, we present a new approximation algorithm, coined STAR, for relationship queries over large relationship graphs. We prove that for n query entities, STAR yields an O(log(n))-approximation of the optimal Steiner tree in pseudopolynomial run-time, and show that in ...