Recently various mathematical models have been proposed to model the signal attenuation obtained from Diffusion Weighted Magnetic Resonance Imaging (DW-MRI). Though effective to various extents, almost all of the existing methods involve model parameters which are abstract mathematical quantities without any tangible connection to physical quantities (e.g. the b-value, gradient pulse duration, pulse separation etc.) involved in the DW-MRI acquisition process. To address this disconnect, in this paper, we present a multi-compartmental model which uses a physical model for restricted diffusion in the cylindrical geometry as the constituent basis function for multi-fiber reconstruction. Through extensive experiments on synthetic data we establish the superiority of the proposed method over the state-of-the-art techniques in terms of fiber orientation detection accuracy. We also present detailed results using human and rat brain data and demonstrate that our method leads to meaningful m...
Ritwik Kumar, Angelos Barmpoutis, Baba C. Vemuri,