We describe and evaluate two new, independently-applicable power reduction techniques for power management on processors that support dynamic voltage and frequency scaling (DVFS): user-driven frequency scaling (UDFS) and process-driven voltage scaling (PDVS). In PDVS, a CPU-customized profile is derived offline that encodes the minimum voltage needed to achieve stability at each combination of CPU frequency and temperature. On a typical processor, PDVS reduces the voltage below the worst-case minimum operating voltages given in datasheets. UDFS, on the other hand, dynamically adapts CPU frequency to the individual user and the workload through direct user feedback. Our UDFS algorithms dramatically reduce typical operating frequencies and voltages while maintaining performance at a satisfactory level for each user. We evaluate our techniques independently and together through user studies conducted on a Pentium M laptop running Windows applications. We measure the overall system powe...
Bin Lin, Arindam Mallik, Peter A. Dinda, Gokhan Me