Existing approaches for modelling the Internet delay space predict end-to-end delays between two arbitrary hosts as static values. Further, they do not capture the characteristics caused by geographical constraints. Peer-to-peer (P2P) systems are, however, often very sensitive to the underlying delay characteristics of the Internet, since these characteristics directly influence system performance. This work proposes a model to predict lifelike delays between a given pair of end hosts. In addition to its low delay computation time, it has only linear memory costs which allows large scale P2P simulations to be performed. The model includes realistic delay jitter, subject to the geographical position of the sender and the receiver. Our analysis, using existing Internet measurement studies reveals that our approach seems to be an optimal tradeoff between a number of conflicting properties of existing approaches.