The present study investigates the effect of the number of controlled robots on performance of an urban search and rescue (USAR) task using a realistic simulation. Participants controlled either 4, 8, or 12 robots. In the fulltask control condition participants both dictated the robots’ paths and controlled their cameras to search for victims. In the exploration condition, participants directed the team of robots in order to explore as wide an area as possible. In the perceptual search condition, participants searched for victims by controlling cameras mounted on robots following predetermined paths selected to match characteristics of paths generated under the other two conditions. By decomposing the search and rescue task into exploration and perceptual search subtasks the experiment allows the determination of their scaling characteristics in order to provide a basis for tentative task allocations among humans and automation for controlling larger robot teams. In the fulltask con...