As we move from a Web of data to a Web of services, enhancing the capabilities of the current Web search engines with effective and efficient techniques for Web services retrieval and selection becomes an important issue. Traditionally, the relevance of a Web service advertisement to a service request is determined by computing an overall score that aggregates individual matching scores among the various parameters in their descriptions. Two drawbacks characterize such approaches. First, there is no single matching criterion that is optimal for determining the similarity between parameters. Instead, there are numerous approaches ranging from using Information Retrieval similarity metrics up to semantic logicbased inference rules. Second, the reduction of individual scores to an overall similarity leads to significant information loss. Since there is no consensus on how to weight these scores, existing methods are typically pessimistic, adopting a worst-case scenario. As a consequenc...