We present a method that is capable of tracking and estimating pose of articulated objects in real-time. This is achieved by using a bottom-up approach to detect instances of the object in each frame, these detections are then linked together using a high-level a priori motion model. Unlike other approaches that rely on appearance, our method is entirely dependent on motion; initial low-level part detection is based on how a region moves as opposed to its appearance. This work is best described as Pictorial Structures using motion. A sparse cloud of points extracted using a standard feature tracker are used as observational data, this data contains noise that is not Gaussian in nature but systematic due to tracking errors. Using a probabilistic framework we are able to overcome both corrupt and missing data whilst still inferring new poses from a generative model. Our approach requires no manual initialisation and we show results for a number of complex scenes and different classes of...
Ben Daubney, David P. Gibson, Neill W. Campbell