Abstract—Today’s wirelessly networked embedded systems underlie a vast array of electronic devices, performing computation, communication, and input/output. A major design goal of these systems is energy efficiency. To achieve this goal, these systems are based on processors with numerous power and clock domains, variable clock rates, voltage scaling, and multiple hibernation states. These processors are designed into systems with sophisticated wireless transceivers and a diverse array of off-chip peripherals, and are linked through regulators to increasingly complex energy supplies. As a result, modern networked embedded systems are characterized by myriad power consumption states and significant power signal transients. Moreover, their power demands are multiscale in both magnitude and time, combining short bursts of high demand with long intervals of power-sipping sleep states. Thus the power supply signals have wideband spectra. In addition, due to noise, uniform relative pre...
Kenji R. Yamamoto, Paul G. Flikkema