Abstract—Efficiently locating information in large-scale distributed systems is a challenging problem to which Peer-to-Peer (P2P) Distributed Hash Tables (DHTs) can provide a highly scalable and cost-effective solution. However, there is very little experience on using DHTs in performance sensitive environments such as High Performance Computing (HPC) datacenters, and there is no published experimental comparison among lowlatency DHTs. To fill this gap, we conducted an in-depth performance comparison of three proposed low-latency singlehop DHTs namely 1h-Calot, D1HT, and OneHop. Specifically, we compared experimentally the lookup latency and CPU use of D1HT with those of 1h-Calot by running each of them concurrently with the normal workload production for a subset of 1,800 nodes of a heavy-loaded HPC datacenter. In addition, we carried out an analytical performance comparison among the three single-hop DHTs for system sizes of up to 10 million nodes. The results showed that D1HT c...
Luiz Rodolpho Monnerat, Cláudio L. Amorim