Abstract—Social conventions are useful self-sustaining protocols for groups to coordinate behavior without a centralized entity enforcing coordination. We perform an in-depth study of different network structures, to compare and evaluate the effects of different network topologies on the success and rate of emergence of social conventions. While others have investigated memory for learning algorithms, the effects of memory or history of past activities on the reward received by interacting agents have not been adequately investigated. We propose a reward metric that takes into consideration the past action choices of the interacting agents. The research question to be answered is what effect does the history based reward function and the learning approach have on convergence time to conventions in different topologies. We experimentally investigate the effects of history size, agent population size and neighborhood size or the emergence of social conventions.