Sciweavers

ICASSP
2009
IEEE

Postural time-series analysis using Empirical Mode Decomposition and second-order difference plots

14 years 6 months ago
Postural time-series analysis using Empirical Mode Decomposition and second-order difference plots
This paper presents a new method for analysis of center of pressure (COP) signals using Empirical Mode Decomposition (EMD). The EMD decomposes a COP signal into a finite set of band-limited signals termed as intrinsic mode functions (IMFs). Thereafter, a signal processing technique used in continuous chaotic modeling is used to investigate the difference between experimental conditions on the summed IMFs. This method is used to detect the degree of variability from a second-order difference plot, which is quantified using a Central Tendency Measure (CTM). Seventeen subjects were tested under eyes open (EO) and eyes closed (EC) conditions, with different vibration frequencies applied for the EC condition in order to provide additional sensory perturbation. This study has demonstrated an effective way to differentiate vibration frequencies by combining EMD and second-order difference (SOD) plots.
Ram Bilas Pachori, David J. Hewson, Hichem Snoussi
Added 21 May 2010
Updated 21 May 2010
Type Conference
Year 2009
Where ICASSP
Authors Ram Bilas Pachori, David J. Hewson, Hichem Snoussi, Jacques Duchêne
Comments (0)