We present a viewpoint-based approach for the quick fusion of multiple stereo depth maps. Our method selects depth estimates for each pixel that minimize violations of visibility constraints and thus remove errors and inconsistencies from the depth maps to produce a consistent surface. We advocate a two-stage process in which the first stage generates potentially noisy, overlapping depth maps from a set of calibrated images and the second stage fuses these depth maps to obtain an integrated surface with higher accuracy, suppressed noise, and reduced redundancy. We show that by dividing the processing into two stages we are able to achieve a very high throughput because we are able to use a computationally cheap stereo algorithm and because this architecture is amenable to hardwareaccelerated (GPU) implementations. A rigorous formulation based on the notion of stability of a depth estimate is presented first. It aims to determine the validity of a depth estimate by rendering multiple d...