— Collaborative spectrum sensing among secondary users (SUs) in cognitive networks is shown to yield a significant performance improvement. However, there exists an inherent trade off between the gains in terms of probability of detection of the primary user (PU) and the costs in terms of false alarm probability. In this paper, we study the impact of this trade off on the topology and the dynamics of a network of SUs seeking to reduce the interference on the PU through collaborative sensing. Moreover, while existing literature mainly focused on centralized solutions for collaborative sensing, we propose distributed collaboration strategies through game theory. We model the problem as a non-transferable coalitional game, and propose a distributed algorithm for coalition formation through simple merge and split rules. Through the proposed algorithm, SUs can autonomously collaborate and self-organize into disjoint independent coalitions, while maximizing their detection probability tak...