—The design of scheduling policies for wireless data systems has been driven by a compromise between the objectives of high overall system throughput and the degree of fairness among users, while exploiting multi-user diversity, i.e., fast-fading variations. These policies have been thoroughly investigated in the absence of user mobility, i.e., without slow fading variations. In the present paper, we examine the impact of intra- and inter-cell user mobility on the trade-off between throughput and fairness, and on the suitable choice of α-fair scheduling policies. We consider a dynamic setting where users come and go over time as governed by random finite-size data transfers, and explicitly allow for users to roam around. It is demonstrated that the overall performance improves as the fairness parameter α is reduced, and in particular, that proportional fair scheduling may yield relatively poor performance, in sharp contrast to the standard scenario with only fast fading. Since a l...
Sem C. Borst, Nidhi Hegde, Alexandre Proutiere