Memory scaling is in jeopardy as charge storage and sensing mechanisms become less reliable for prevalent memory technologies, such as DRAM. In contrast, phase change memory (PCM) storage relies on scalable current and thermal mechanisms. To exploit PCM’s scalability as a DRAM alternative, PCM must be architected to address relatively long latencies, high energy writes, and finite endurance. We propose, crafted from a fundamental understanding of PCM technology parameters, area-neutral architectural enhancements that address these limitations and make PCM
Benjamin C. Lee, Engin Ipek, Onur Mutlu, Doug Burg