Educational process mining (EPM) aims at (i) constructing complete and compact educational process models that are able to reproduce all observed behavior (process model discovery), (ii) checking whether the modeled behavior (either pre-authored or discovered from data) matches the observed behavior (conformance checking), and (iii) projecting information extracted from the logs onto the model, to make the tacit knowledge explicit and facilitate better understanding of the process (process model extension). In this paper we propose a new domain-driven framework for EPM which assumes that a set of pattern templates can be predefined to focus the mining in a desired way and make it more effective and efficient. We illustrate the ideas behind our approach with examples of academic curricular modeling, mining, and conformance checking, using the student database of our department.