With the recent success of Monte-Carlo tree search algorithms in Go and other games, and the increasing number of cores in standard CPUs, the efficient parallelization of the search has become an important issue. We present a new lock-free parallel algorithm for Monte-Carlo tree search which takes advantage of the memory model of the IA-32 and Intel-64 CPU architectures and intentionally ignores rare faulty updates of node values. We show that this algorithm significantly improves the scalability of the Fuego Go program.