We investigate the problem of ranking all process models in a repository according to their similarity with respect to a given process model. We focus specifically on the application of graph matching algorithms to this similarity search problem. Since the corresponding graph matching problem is NP-complete, we seek to find a compromise between computational complexity and quality of the computed ranking. Using a repository of 100 process models, we evaluate four graph matching algorithms, ranging from a greedy one to a relatively exhaustive one. The results show that the mean average precision obtained by a fast greedy algorithm is close to that obtained with the most exhaustive algorithm.
Remco M. Dijkman, Marlon Dumas, Luciano Garc&iacut