Abstract. Virtual Private Networks are a popular mechanism for building complex network infrastructures. Such infrastructures are usually accompanied by strict administrative restrictions on all VPN endpoints to protect the perimeter of the VPN. However, enforcement of such restrictions becomes difficult if these endpoints are personal computers used for remote VPN access. Commonly employed measures like anti-virus or software agents fail to defend against unanticipated attacks. The Trusted Computing Group invested significant work into platforms that are capable of secure integrity reporting. However, trusted boot and remote attestation also require a redesign of critical software components to achieve their full potential. In this work, we design and implement a VPN architecture for trusted platforms. We solve the conflict between security and flexibility by implementing a selfcontained VPN service that resides in an isolated area, outside the operating system environment visible...