Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondences ? generally a computationally expensive task that becomes impractical for large set sizes. We present a new fast kernel function which maps unordered feature sets to multi-resolution histograms and computes a weighted histogram intersection in this space. This "pyramid match" computation is linear in the number of features, and it implicitly finds correspondences based on the finest resolution histogram cell where a matched pair first appears. Since the kernel does not penalize the presence of extra features, it is robust to clutter. We show the kernel function is positive-definite, making it valid for use in learning algorithms whose optimal solutions are guaranteed only for M...