Abstract. We study bisimulation and minimization for weighted automata, relying on a geometrical representation of the model, linear weighted automata (lwa). In a lwa, the state-space of the automaton is represented by a vector space, and the transitions and weighting maps by linear morphisms over this vector space. Weighted bisimulations are represented by sub-spaces that are invariant under the transition morphisms. We show that the largest bisimulation coincides with weighted language equivalence, can be computed by a geometrical version of partition refinement and that the corresponding quotient gives rise to the minimal weighted-language equivalent automaton. Relationships with Larsen and Skou’s probabilistic bisimulation and with classical results in Automata Theory are also discussed.